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Abstract. We show that the non-commutative Yang–Mills field forms an irreducible representation of the
(undeformed) Lie algebra of rigid translations, rotations and dilatations. The non-commutative Yang–Mills
action is invariant under combined conformal transformations of the Yang–Mills field and of the non-
commutativity parameter θ. The Seiberg–Witten differential equation results from a covariant splitting of
the combined conformal transformations and can be computed as the missing piece to complete a covariant
conformal transformation to an invariance of the action.

1 Introduction

In non-commutative field theory one of the greatest sur-
prises is the existence of the so-called Seiberg–Witten map
[1]. The Seiberg–Witten map was originally deduced from
the observation that different regularization schemes
(point splitting versus Pauli–Villars) in the field theory
limit of string theory lead either to a commutative or a
non-commutative field theory and thus suggest an equiv-
alence between them.

A particular application of the Seiberg–Witten map is
the construction of the non-commutative analog of gauge
theories with arbitrary gauge group, which automatically
leads to enveloping algebra-valued fields involving in-
finitely many degrees of freedom [2]. The Seiberg–Witten
map solves this problem in an almost miraculous manner
by mapping the enveloping algebra-valued non-commuta-
tive gauge field to a commutative gauge field with finitely
many degrees of freedom.

The renormalization of non-commutative Yang–Mills
(NCYM) theories is an open puzzle: Loop calculations [3]
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and power-counting analysis [4] show the existence of a
new type of infrared divergences. The circumvention of
the infrared problem by application of the Seiberg–Witten
map leads to a power-counting non-renormalizable theory
with infinitely many vertices. In an earlier work [5] we
have proven the two-point function of θ-expanded non-
commutative Maxwell theory to be renormalizable to all
orders. However, to show renormalizability of all N -point
functions one cannot proceed without strong symmetries
that limit the number of possible counterterms. In partic-
ular, one needs to find a symmetry that fixes the special
θ-structure of the θ-expanded theory.

The intuition that the symmetry searched for is related
to space-time symmetries leads us to an investigation of
rigid conformal symmetries (translation, rotation, dilata-
tion) for NCYM theory characterized by a constant field
θµν . The term rigid means that the factor Ω in the con-
formal transformation (ds′)2 = Ω2ds2 of the line element
is constant. The reason for this restriction is that θ has to
be constant in all reference frames.

We show in this paper that the non-commutative Yang–
Mills field Â forms an irreducible spin-1 representation
of the undeformed Lie algebra of conformal transforma-
tions. We also prove that the non-commutative Yang–
Mills (NCYM) action is invariant under the sum of the
conformal transformations of Â and of θ. This result can
either be regarded as an exact invariance (compatible with
gauge transformations) with respect to observer Lorentz
transformations or as the quantitative amount of symme-
try breaking under particle Lorentz transformations; see
also Sect. 3.

Regarding the combined conformal transformations of
Â and θ, one can consider various splittings into individ-
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ual transformations. The splitting is of physical impor-
tance since the individual field-transformations yield the
breaking of particle Lorentz transformations. There is one
(up to gauge transformations) distinguished splitting for
which both individual components are compatible (covari-
ant) with gauge transformations, i.e. the commutator of
these components with a gauge transformation is again a
gauge transformation. This ensures that the breaking of
particle Lorentz transformations is gauge invariant, which
must be the case for an observable. Whereas the θ-part of
this covariant splitting cannot be computed, the Â-part
is easily constructed by a covariance ansatz involving co-
variant coordinates [6,7]. This covariance ansatz general-
izes the gauge-covariant conformal transformations which
in its commutative form were first investigated by Jackiw
[8,9]. These transformations are loosely related to the im-
provements allowing to pass from the canonical energy-
momentum tensor to the symmetric and traceless one.
Now, the covariant θ-complement of the covariant trans-
formation of Â can easily be computed as the missing piece
to achieve invariance of the NCYM action. The result is
the Seiberg–Witten differential equation [1].

Almost all splittings of the combined conformal trans-
formation of Â and θ lead to a first-order differential equa-
tion for Â which can be used to express the non-com-
mutative fields in terms of initial values living on com-
mutative space-time. The covariant splitting (which leads
to the Seiberg–Witten differential equation) has the dis-
tinguished property that the resulting θ-expansion of a
gauge-invariant non-commutative action is invariant un-
der commutative gauge transformations. This was the
original motivation for the Seiberg–Witten map. We would
like to point out, however, that the original gauge-
equivalence condition [1] is more restrictive than the ap-
proach of this paper – a fact made transparent by our
investigation of non-commutative conformal symmetries.
Moreover, we prove that the θ-expansion of the non-com-
mutative conformal symmetries reduces to the commuta-
tive conformal symmetries.

All this means that there are two quantum field the-
ories associated with the NCYM action. The first one is
obtained by a direct gauge fixing of the NCYM action and
the other one by gauge fixing of the θ-expanded NCYM
action. The second approach was adopted in [10,5]: Take
the Seiberg–Witten expansion of the NCYM action as a
very special type of an action for a commutative gauge
field Aµ coupled to a constant external field θµν and quan-
tize it in the ordinary way (with the linear gauge fixing
in [10]). It is not completely clear in which sense this is
equivalent to the first approach of a direct quantization
of the non-commutative Yang–Mills action. The infrared
problem found in non-commutative quantum field theory
[3,4] and its absence in the approach of [10] shows the in-
equivalence at least on a perturbative level. For interesting
physical consequences of the Seiberg–Witten expanded ac-
tion in non-commutative QED, see [11].

This paper is organized as follows: First we recall in
Sect. 2 necessary information about non-commutative field
theory and covariant coordinates. In Sect. 3 we distinguish

between observer and particle Lorentz transformations.
After a review of rigid conformal symmetries in the com-
mutative setting in Sect. 4 we extend these structures in
Sect. 5 to non-commutative Yang–Mills theory, deriving
in particular the Seiberg–Witten differential equation and
the θ-expansion of the non-commutative conformal and
gauge symmetries. In Sect. 6 we comment on quantization
and Sect. 7 contains the summary. Longer but important
calculations are delegated to the appendix.

2 Non-commutative geometry
and covariant coordinates

In this section we give a short introduction to non-com-
mutative field theory and the concept of covariant coordi-
nates. We consider a non-commutative geometry charac-
terized by the algebra

[xµ, xν ] = iθµν , (1)

where θµν is an antisymmetric constant tensor. The non-
commutative algebra may be represented on a commuta-
tive manifold by the �-product

(f � g)(x) =
∫

d4k

(2π)4

∫
d4p

(2π)4
(2)

× e−i(kµ+pµ)xµ

e−(i/2)θµνkµpν f̃(k)g̃(p),

where f(x) and g(x) are ordinary functions on Minkowski
space and f̃(p) and g̃(p) their Fourier transforms. Denot-
ing the ordinary (commutative) coordinates by x we have

[xµ, xν ]	 ≡ xµ � xν − xν � xµ = iθµν . (3)

Let us now consider an infinitesimal gauge transformation
δG of a field Φ(x):

δGΦ(x) = iε(x) � Φ(x), (4)

with ε(x) being an infinitesimal gauge parameter. As usual
one chooses the coordinates to be invariant under gauge
transformations, δGx = 0. However, with this construc-
tion one finds that multiplication by x does not lead to a
covariant object:

δG(xµ � Φ(x)) �= iε(x) � (xµ � Φ(x)). (5)

The solution of this problem, which was given in [7], is to
introduce covariant coordinates [6]

X̂µ ≡ xµ1+ θµνÂν , (6)

where the transformation of the field Â(x) is defined by
the requirement

δG(X̂µ � Φ(x)) = iε(x) � (X̂µ � Φ(x)). (7)

The relation (7) leads to the transformation rule for the
field Â(x)

δGÂµ(x) = ∂µε(x)− i[Âµ(x), ε(x)]	 ≡ D̂µε(x), (8)
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and Â(x) is interpreted as a non-commutative gauge field.
In this way gauge theory is seen to be intimately related
to the non-commutative structure (3) of space and time.
The covariant coordinates fulfill

[X̂µ, X̂ν ]	 = iθµν + iθµαθνβF̂αβ , (9)

where F̂αβ = ∂αÂβ − ∂βÂα − i[Âα, Âβ ]	 is the non-com-
mutative field strength.

3 Observer versus particle
Lorentz transformations

In general one should distinguish between two kinds of
Lorentz (or more general, conformal) transformations (see
[12] and references therein). Lorentz transformations in
special relativity relate physical observations made in two
inertial reference frames characterized by different veloci-
ties and orientations. These transformations can be imple-
mented as coordinate changes, known as observer Lorentz
transformations. Alternatively one considers transforma-
tions which relate physical properties of two particles with
different helicities or momenta within one specific iner-
tial frame. These are known as particle Lorentz trans-
formations. Usually (without background) these two ap-
proaches are equivalent. However, in the presence of a
background tensor field this equivalence fails, because the
background field will transform as a tensor under observer
Lorentz transformation and as a set of scalars under par-
ticle Lorentz transformations.

Thirdly, having a background tensor field one may con-
sider the transformations of all fields within a specific
inertial frame simultaneously, including the background
field. These transformations are known as (inverse) active
Lorentz transformations and are equivalent to observer
Lorentz transformations.

What kind of “field” is θαβ? Since we are consider-
ing the case of a constant θ, it certainly is a background
field. Therefore, all results of this paper refer to “observer”
transformations. This also matches the setting of non-
commutative field theory appearing in string theory. Here
θ is related to the inverse of a “magnetic field” (mostly
taken to be constant). In this sense, Lorentz invariance of
the action means that its value is the same for observers in
different inertial reference frames. Since invariance of the
action always involves the sum of conformal transforma-
tions of Â and θ (see Sect. 5.1), one can however take the
“particle” point of view and regard our “observer” invari-
ance as the quantitative amount of “particle” symmetry
breaking due to the presence of θ.

However, we find it desirable to extend the general
analysis to the case of a non-constant θ. In this case one
could choose to view θ as a dynamical field which also
transforms under “particle” transformations.

In the rest of the paper we will simply refer to confor-
mal transformations, leaving out the “observer” prefix.

4 Rigid conformal symmetries:
commutative case

The Lie algebra of the rigid conformal transformations is
generated by {Pτ ,Mαβ , D} and the following commuta-
tion relations:

[Pτ , Pσ] = 0, [D,D] = 0,
[Pτ ,Mαβ ] = gτβPα − gταPβ , [Pτ , D] = −Pτ ,

[Mαβ ,Mγδ] = gαγMβδ − gβγMαδ − gαδMβγ + gβδMαγ ,

[Mαβ , D] = 0. (10)

A particular representation is given by infinitesimal rigid
conformal transformations of the coordinates xµ,

(xµ)T = (1 + aτρx(Pτ ))xµ +O(a2),
ρx(Pτ ) = ∂τ (translation), (11)

(xµ)R = (1 + ωαβρx(Mαβ))xµ +O(ω2),
ρx(Mαβ) = xβ∂α − xα∂β (rotation), (12)

(xµ)D = (1 + ερx(D))xµ +O(ε2),

ρx(D) = −xδ∂δ (dilatation), (13)

for constant parameters aτ , ωαβ , ε.
A field is by definition an irreducible representation

of the Lie algebra (10). In view of the non-commutative
generalization we are interested in the Yang–Mills field
Aµ and the constant antisymmetric two-tensor field θµν

whose representations are given by

ρ1(Pτ )Aµ = WT
A;τAµ,

WT
A;τ :=

∫
d4xtr

(
∂τAµ

δ

δAµ

)
, (14)

ρ1(Mαβ)Aµ = WR
A;αβAµ,

WR
A;αβ :=

∫
d4xtr

(
(gµαAβ − gµβAα + xα∂βAµ

−xβ∂αAµ)
δ

δAµ

)
, (15)

ρ1(D)Aµ = WD
AAµ,

WD
A :=

∫
d4xtr

(
(Aµ + xδ∂δAµ)

δ

δAµ

)
, (16)

and1

ρ−2(Pτ )θµν =WT
θ;τθ

µν , WT
θ;τθ

µν := 0, (17)

1 The translation invariance ρ−2(Pτ )θµν = 0 qualifies θµν as
a constant field. It takes however different (constant!) values
in different reference frames. The necessity to have a constant
field in the model forces us to restrict ourselves to rigid con-
formal transformations. Local conformal transformations as in
[13] are incompatible with constant fields. In particular, the
special conformal transformations Kσ are excluded because the
commutator [Kσ, Pτ ] = 2(gστD − Mστ ) cannot be represented
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ρ−2(Mαβ)θµν = WR
θ;αβθ

µν , (18)

WR
θ;αβθ

µν := δµ
αθ

ν
β − δµ

βθ
ν

α + δν
αθ

µ
β − δν

βθ
µ
α,

ρ−2(D)θµν = WD
θ θ

µν , WD
θ θ

µν := −2θµν . (19)

Throughout this paper we use the following differentiation
rule for an antisymmetric two-tensor field:

∂θµν

∂θρσ
:=

1
2
(δµ

ρ δ
ν
σ − δµ

σδ
ν
ρ ). (20)

The factor 1/2 in (20) ensures the same rotational behav-
ior of the spin indices in (15) and (18). The Yang–Mills
action

Σ = − 1
4g2

∫
d4xtr(FµνF

µν), (21)

for Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] being the Yang–Mills
field strength and g a coupling constant, is invariant un-
der (14)–(16). Moreover the action (21) is invariant under
gauge transformations

WG
A;λ =

∫
d4xtr

(
Dµλ

δ

δAµ

)
,

Dµ• = ∂µ • −i[Aµ, •], (22)

with a possibly field-dependent transformation parame-
ter λ.

5 Rigid conformal symmetries:
non-commutative case

In this section we show that the non-commutative gauge
field forms an irreducible representation of the same unde-
formed Lie algebra of rigid conformal transformations. To
obtain this representation one has to take the symmet-
ric product when going to the non-commutative realm:
AB → (1/2){A,B}	. Compatibility with gauge transfor-
mations implies that only the sum of the conformal trans-
formations of gauge field Â and θ has a meaning. A co-
variant splitting of this sum allows a θ-expansion into a
commutative gauge theory.

5.1 Conformal transformations
of the non-commutative gauge field

We generalize the (rigid) conformal transformations (14)–
(16) to non-commutative Yang–Mills theory, i.e. a gauge
theory for the field Âµ transforming according to (8):

WT
Â;τ :=

∫
d4xtr

(
∂τ Âµ

δ

δÂµ

)
, (23)

WR
Â;αβ

:=
∫

d4xtr
((1

2
{xα, ∂βÂµ}	 − 1

2
{xβ , ∂αÂµ}	

+ gµαÂβ − gµβÂα

) δ

δÂµ

)
, (24)

WD
Â
:=
∫

d4xtr

((
1
2
{xδ, ∂δÂµ}	 + Âµ

)
δ

δÂµ

)
, (25)

where {U, V }	 := U�V +V �U is the �-anticommutator. It
is important to take the symmetric product in the “quan-
tization” xα∂βAµ 
→ (1/2){xα, ∂βÂµ}	. Let us introduce
the convenient abbreviation W ?

Â
standing for one of the

operators {WT
Â;τ
,WR

Â;αβ
,WD

Â
} and similarly for W ?

θ in
(17)–(19).

Applying WR
Â;αβ

to the non-commutative Yang–Mills

field strength F̂µν = ∂µÂν −∂νÂµ − i[Âµ, Âν ]	 one obtains

WR
Â;αβ

F̂µν =
1
2
{xα, ∂βF̂µν}	 − 1

2
{xβ , ∂αF̂µν}	 + gµαF̂βν

− gµβF̂αν + gναF̂µβ − gνβF̂µα (26)

− 1
2
θ ρ

α {∂ρÂµ, ∂βÂν}	 +
1
2
θ ρ

β {∂ρÂµ, ∂αÂν}	

+
1
2
θ ρ

α {∂ρÂν , ∂βÂµ}	 − 1
2
θ ρ

β {∂ρÂν , ∂αÂµ}	,

which is not the expected Lorentz transformation of the
field strength. However, we must also take the θ-trans-
formation (17)–(19) into account, which acts on the �-
product in the Â-bilinear part of F̂µν . Using the differen-
tiation rule for the �-product

W ?
θ (U � V ) =

(
W ?

θU
)
� V + U �

(
W ?

θ V
)

+
i
2
(
W ?

θ θ
µν
)
(∂µU) � (∂νV ), (27)

which is a consequence of (2) and (20), together with

W ?
θ Âµ = 0, (28)

one finds that WR
θ;αβF̂µν cancels exactly the last two lines

in (26):

(WR
Â;αβ

+WR
θ;αβ)F̂µν =

1
2
{xα, ∂βF̂µν}	− 1

2
{xβ , ∂αF̂µν}	

+gµαF̂βν − gµβF̂αν + gναF̂µβ − gνβF̂µα. (29)

In the same way one finds

(WD
Â
+WD

θ )F̂µν =
1
2
{xδ, ∂δF̂µν}	 + 2F̂µν . (30)

It is then easy to verify that the non-commutative Yang–
Mills (NCYM) action

Σ̂ = − 1
4g2

∫
d4xtr(F̂µν � F̂µν) (31)

is invariant under non-commutative translations, rotations
and dilatations2:

WT
Â+θ;τ Σ̂ = 0, WR

Â+θ;αβ
Σ̂ = 0, WD

Â+θ
Σ̂ = 0, (32)

2 In [14] we have shown that an identity like WD
φ Σ̂ −

2θµν(∂Σ̂/∂θµν) = 0 exists for dilatation in the case of non-
commutative φ4 theory
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with the general notation

W ?
A;C +W ?

B;C =W ?
A+B;C . (33)

Computing the various commutators between W ?
Â

given in (23)–(25) one convinces oneself that the non-
commutative gauge field Âµ forms an irreducible repre-
sentation of the conformal Lie algebra (10). For conve-
nience we list these commutators (forW ?

Â+θ
, which makes

no difference to W ?
Â
when applied to Âµ) below in (41). It

is remarkable that the conformal group remains the same
and should not be deformed when passing from a commu-
tative space to a non-commutative one whereas the gauge
groups are very different in both cases. This shows that
the fundamentals of quantum field theory – Lorentz co-
variance, locality, unitarity – have good chances to survive
in the non-commutative framework.

In particular, the Wigner theorem [15] that a field is
classified by mass and spin holds. The conformal Lie al-
gebra is of rank 2, hence its irreducible representations
ρ are (in nondegenerate cases) classified by two Casimir
operators,

m2 = −gτσρ(Pτ )ρ(Pσ),

s(s+ 1)m2 = −gµνW
PL;µWPL;ν , (34)

where

WPL;µ = −1
2
εµταβρ(Pτ )ρ(Mαβ) (35)

is the Pauli–Ljubanski vector and m and s mass and spin
of the particle, respectively. In our case, where ρ(?) is given
by the action of W ?

Â+θ
on Âµ, we find

m2Âµ = −∂τ∂τ Âµ, (36)

gρσW
PL;ρ
Â

WPL;σ
Â

Âµ = 2(gµτ∂
σ∂σ − ∂µ∂τ )Âτ + 0∂µ∂τ Â

τ ,

which means that the transverse components of Âµ have
spin s = 1 and the longitudinal component spin s = 0.

5.2 Compatibility with gauge symmetry

The NCYM action (31) is additionally invariant under
non-commutative gauge transformations

WG
Â;λ̂ =

∫
d4xtr

(
(∂µλ− i[Âµ, λ̂]	)

δ

δÂµ

)
, (37)

where λ̂ is a possibly Â-dependent gauge parameter. This
means that the symmetry algebra of the NCYM action is
at least3 given by the Lie algebra

L = G >$ C (38)

3 Renormalizability seems to require that the symmetry al-
gebra of the NCYM action is actually larger than L

of Ward identity operators, which is the semidirect prod-
uct of the Lie algebra G of possibly field-dependent gauge
transformations WG

Â;λ̂
with the Lie algebra C of rigid con-

formal transformations W {T,R,D}
Â+θ

. The commutator rela-
tions of L are computed to

[WG
Â;λ̂1

,WG
Â;λ̂2

]

= −iWG
Â;[λ̂1,λ̂2]�+iWG

Â;λ̂1
λ̂2−iWG

Â;λ̂2
λ̂1
, (39)

[WT
Â+θ;τ ,W

G
Â;λ̂] =WG

Â;−∂τ λ̂+WT
Â+θ;τ

λ̂
,

[WR
Â+θ;αβ

,WG
Â;λ̂]

=WG
Â;− 1

2 {xα,∂β λ̂}�+ 1
2 {xβ ,∂αλ̂}�+WR

Â+θ;αβ
λ̂
,

[WD
Â+θ

,WG
Â;λ̂] =WG

Â;− 1
2 {xδ,∂δλ̂}�+WD

Â+θ
λ̂
, (40)

[WT
Â+θ;τ ,W

T
Â+θ;σ] = 0,

[WT
Â+θ;τ ,W

R
Â+θ;αβ

] = gτβW
T
Â+θ;α − gταW

T
Â+θ;β ,

[WT
Â+θ;τ ,W

D
Â+θ

] = −WT
Â+θ;τ ,

[WR
Â+θ;αβ

,WR
Â+θ;γδ

] = gαγW
R
Â+θ;βδ

− gβγW
R
Â+θ;αδ

−gαδW
R
Â+θ;βγ

+ gβδW
R
Â+θ;αγ

,

[WR
Â+θ;αβ

,WD
Â+θ

] = 0,

[WD
Â+θ

,WD
Â+θ

] = 0. (41)

It is crucial to use the sum of the individual transforma-
tionsW {R,D}

Â
andW {R,D}

θ because the individual commu-
tators do not preserve the Lie algebra L:

[WG
Â;λ̂,W

R
Â;αβ

]Âµ

=WG
Â; 12 {xα,∂β λ̂}�− 1

2 {xβ ,∂αλ̂}�−WR
Â;αβ

λ̂
Âµ

−1
2
θρ

β{∂αÂµ, ∂ρλ̂}	 +
1
2
θρ

α{∂βÂµ, ∂ρλ̂}	

+
1
2
θρ

β{∂ρÂµ, ∂αλ̂}	 − 1
2
θρ

α{∂ρÂµ, ∂βλ̂}	,

[WG
Â;λ̂,W

D
Â
]Âµ

=WG
Â; 12 {xδ,∂δλ̂}−WD

Â
λ̂
Âµ + θδρ{∂δÂµ, ∂ρλ̂}	. (42)

5.3 Gauge covariance, covariant representation
and Seiberg–Witten differential equation

In (39)–(41) and (42) we showed that only the combined
operators (18) and (19) with (24) and (25) fulfilled the
algebra. Since θ is a background field the “splitting”

W ?
Â+θ

→ W ?
Â
+W ?

θ (43)

is of physical importance because the breaking of “parti-
cle” transformations (rotation and dilatation)

W ?
Â
Σ̂ = ∆? (44)
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is in principle measurable. Therefore, ∆? gets the status of
an observable and should be gauge invariant. However, due
to (42) this is not fulfilled by (24) and (25), which leads
us to the conclusion that (24) and (25) are not the true
“particle” transformations. Instead, we look for a splitting

W ?
Â+θ

≡ W ?
Â
+W ?

θ = W̃ ?
Â
+ W̃ ?

θ , (45)

[W̃ ?
Â
,WG

Â;λ̂] = WG
Â;λ̂?

Â

, [W̃ ?
θ ,W

G
Â;λ̂] =WG

Â;λ̂?
θ

, (46)

for appropriate field-dependent gauge parameters λ̂?
Â
and

λ̂?
θ. Equation (46) implies that the breaking of “particle”

transformations is gauge invariant
W̃ ?

Â
Σ̂ = ∆̃?, WG

Â;λ̂∆̃
? = 0. (47)

Because of (40), each of the two relations in (46) is of
course the consequence of the other relation. Furthermore,
we impose the condition that the splitting should be uni-
versal in the sense W̃ ?

θ =W ?
θ (θ

ρσ)(d/dθρσ):

W̃ ?
Â
= W ?

Â
−W ?

θ (θ
ρσ)
∫

d4xtr

(
dÂµ

dθρσ

δ

δÂµ

)
,

W̃ ?
θ = W ?

θ +W ?
θ (θ

ρσ)
∫

d4xtr

(
dÂµ

dθρσ

δ

δÂµ

)

≡ W ?
θ (θ

ρσ)
d

dθρσ
. (48)

The notation dÂµ/dθρσ is for the time being just a symbol
for a field-dependent quantity with three Lorentz indices
and power-counting dimension 3. Inserted into (46) one
gets the equivalent conditions

−i[W̃ ?
Â
Âµ, λ̂]	 −WG

Â;λ̂(W̃
?
Â
(Âµ)) = D̂µ(λ̂?

Â
− W̃ ?

Â
(λ̂)),

(49)

W ?
θ (θ

ρσ)

(
−i
[
dÂµ

dθρσ
, λ̂

]
	

+
1
2
{∂ρÂµ, ∂σλ̂}	

−WG
Â;λ̂

(
dÂµ

dθρσ

))
= D̂µ(λ̂?

θ − W̃ ?
θ (λ̂)). (50)

Whereas (50) cannot be solved without prior knowledge
of the result4, we can trivially solve (49) by a covariance
ansatz:

W̃T
Â;τ =WG

Â;λ̂T
τ
+
∫

d4xtr

(
F̂τµ

δ

δÂµ

)
, (51)

W̃R
Â;αβ

=WG
Â;λ̂R

αβ

+
∫

d4xtr

((
1
2
{X̂α, F̂βµ}	

− 1
2
{X̂β , F̂αµ}	 −WR

θ;αβ(θ
ρσ)Ω̂ρσµ

)
δ

δÂµ

)
, (52)

W̃D
Â
=WG

Â;λ̂D (53)

4 One can make of course an ansatz for dÂµ/dθρσ with free
coefficients to be determined by (50)

+
∫

d4xtr

((
1
2
{X̂δ, F̂δµ}	 −WD

θ (θρσ)Ω̂ρσµ

)
δ

δÂµ

)
,

where X̂µ = xµ + θµνÂν are the covariant coordinates
[6,7] and Ω̂ρσµ is a polynomial in the covariant quanti-
ties θ, X̂, F̂ , D̂ . . . D̂F̂ which is antisymmetric in ρ, σ and
of power-counting dimension 3. For physical reasons (e.g.
quantization) an X̂-dependence of Ω̂ρσµ should be ex-
cluded. We denote (51)–(53) as covariant transformations
of the non-commutative gauge field Â,
because these transformations reduce in the commutative
case to the “gauge-covariant conformal transformations”
of Jackiw [8,9].

It follows from (38) and (45) that W̃ ?
θ and thus dÂµ/

dθρσ are (up to a gauge transformation) precisely the miss-
ing piece to complete (52) and (53) to an invariance of the
action,

(W̃R
Â;αβ

+ W̃R
θ;αβ)Σ̂ = 0, (W̃D

Â;αβ
+ W̃D

θ;αβ)Σ̂ = 0.(54)

Applying (51)–(53) to the NCYM action (31) we obtain
for Ω̂ρσµ = 0

W̃T
Â;τ Σ̂ = 0, (55)

W̃R
Â;αβ

Σ̂ =
1
g2

∫
d4xtr(θαρF̂

ρσ � T̂βσ − θβρF̂
ρσ � T̂ασ),

(56)

W̃D
Â
Σ̂ =

1
g2

∫
d4xtr(θδ

ρF̂
ρσ � T̂δσ), (57)

where the quantity

T̂µν =
1
2
F̂µρ � F̂

ρ
ν +

1
2
F̂νρ � F̂

ρ
µ − 1

4
gµνF̂ρσ � F̂

ρσ (58)

resembles (but is not) the energy-momentum tensor. The
calculation uses however the symmetry T̂µν = T̂νµ (a con-
sequence of the symmetrical product in (52)) and trace-
lessness gµν T̂µν = 0. We give in AppendixA details of the
computation of (56). As we show in AppendixB, the first
(rotational) condition in (54) has, reinserting Ω̂ρσµ, the
solution

dÂµ

dθρσ
= −1

8
{Âρ, ∂σÂµ + F̂σµ}	 +

1
8
{Âσ, ∂ρÂµ + F̂ρµ}	

+Ω̂ρσµ, (59)

which is also compatible with the second (dilatational)
condition in (54). The solution (59) is for Ω̂ρσµ = 0 known
as the Seiberg–Witten differential equation [1]. It is now
straightforward to check (50) for an arbitrary field-
dependent gauge parameter λ̂. The gauge parameters in
(48) are



A.A. Bichl et al.: Non-commutative Lorentz symmetry and the origin of the Seiberg–Witten map 171

λ̂T
τ = Âτ ,

λ̂R
αβ =

1
4
{2xα + θ ρ

α Âρ, Âβ}	 − 1
4
{2xβ + θ ρ

β Âρ, Âα}	,

λ̂D =
1
2
{xδ, Âδ}	. (60)

5.4 θ-expansion of non-commutative gauge
transformations

The meaning of the second condition in (46) is easy to
understand: W̃ ?

θ applied to a gauge-invariant functional
remains gauge invariant. Because W̃ ?

θ (θ
ρσ) commutes with

WG
Â;λ̂

, we conclude with the notation

d
dθρσ

=
∂

∂θρσ
+
∫

d4xtr

(
dÂµ

dθρσ

δ

δÂµ

)

(see (48)) that[
d

dθρσ
,WG

Â;λ̂

]
=WG

Â;λ̂ρσ(λ̂), (61)

where λ̂ρσ(λ̂) is determined by λ̂ and the choice of dÂµ/
dθρσ. In particular, we conclude from (61) that

dnΓ

dθρ1σ1 . . .dθρnσn
(62)

is gauge invariant if Γ is gauge invariant. Given any first-
order differential equation dÂµ/dθρσ = Φρσµ[Â, θ] we can
express Â in terms of θ and the initial value A at θ =
0. In the same way, the first-order differential equation
expresses any (sufficiently regular) functional Γ [Â, θ] in
terms of θ and the initial value A:

Γ [A, θ] :=
∞∑

n=0

1
n!
θρ1σ1 · · · θρnσn

(
dnΓ [Â, θ]

dθρ1σ1 . . .dθρnσn

)
θ=0

.

(63)

The special choice (59) of the differential equation has due
to (62) the distinguished property that

WG
Â;λ̂(Γ [Â, θ]) = 0 ⇒ WG

A;λ=λ̂|θ=0

(
N∑

n=0

1
n!
θρ1σ1

· · · θρnσn

(
dnΓ [Â, θ]

dθρ1σ1 . . .dθρnσn

)
θ=0

)
= 0. (64)

In other words, any approximation up to order N in θ of
a non-commutatively gauge-invariant functional Γ [Â, θ] is
invariant under commutative gauge transformations if the
θ-evolution is given by (59), i.e. the solution of (46). We
stress that the non-commutative conformal transforma-
tions (23)–(25) and their commutators (40) with gauge
transformations enabled us to compute the gauge-equiva-
lent θ-expansion of Seiberg and Witten directly (without

an ansatz) via the equivalent but much simpler solution
of (54) for the trivially obtained covariant transformations
(48).

Our condition (46) is more general than the original
gauge-equivalence requirement [1] by Seiberg and Witten.
To see this we consider the θ-expansion of WG

Â;λ̂
Âµ taking

(61) into account, where λ̂ is allowed to depend on Â. To
demonstrate the relation we consider the term to second
order in θ:

d2WG
Â;λ̂
Âµ

dθρ1σ1dθρ2σ2

=
d

dθρ1σ1

([
d

dθρ2σ2
,WG

Â;λ̂

]
+WG

Â;λ̂

d
dθρ2σ2

)
Âµ

=
(
WG

Â;λ̂ρ1σ1 (λ̂ρ2σ2 (λ̂)) +WG
Â;λ̂ρ2σ2 (λ̂)

d
dθρ1σ1

+ WG
Â;λ̂ρ1σ1 (λ̂)

d
dθρ2σ2

+WG
Â;λ̂

d2

dθρ1σ1dθρ2σ2

)
Âµ.

Setting θ → 0, generalizing it to any order n and inserting
the result into the Taylor expansion (63) we obtain

(WG
Â;λ̂Âµ)[A, θ] = WG

A;λ[λ̂;A,θ](Âµ[A, θ]), (65)

λ[λ̂;A, θ] = (λ̂)θ=0 + θρσ(λ̂ρσ(λ̂))θ=0

+
1
2
θρ1σ1θρ2σ2(λ̂ρ1σ1(λ̂ρ2σ2(λ̂)))θ=0 + . . .

Equation (65) is the original Seiberg–Witten gauge-equiva-
lence [1] iff (λ̂ρσ(λ̂))θ=0 = 0. In other words, our approach
via (46) – which leads to the same θ-expansion as the
Seiberg–Witten requirement; see (64) – is more general.

5.5 θ-expansion of non-commutative conformal
transformations

According to (63) let us compute the θ-expansion of the
non-commutative conformal transformation of a functio-
nal Γ [Â, θ] approximated up to order N in θ,

N∑
n=0

1
n!
θρ1σ1 · · · θρnσn

(
dn(W ?

Â+θ
Γ [Â, θ])

dθρ1σ1 . . .dθρnσn

)
θ=0

. (66)

As a typical example we regard the n = 2 term in this
series, which we derive by the following procedure. Before
putting θ = 0 we consider

T ?
2 := θρ1σ1θρ2σ2

d2(W ?
Â+θ

Γ [Â; θ])

dθρ1σ1dθρ2σ2

= θρ1σ1
d

dθρ1σ1

(
θρ2σ2

d(W ?
Â+θ

Γ [Â; θ])

dθρ2σ2

)

−θρ2σ2
d(W ?

Â+θ
Γ [Â; θ])

dθρ2σ2
. (67)

The crucial property we use is the identity[
W ?

Â+θ
, θρσ d

dθρσ

]
= 0, (68)
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which is valid for a very general class of differential equa-
tions. See AppendixC for details. Thus,

T ?
2 = W ?

Â+θ

(
θρ1σ1

d
dθρ1σ1

(
θρ2σ2

dΓ [Â; θ]
dθρ2σ2

)
(69)

−θρ2σ2
dΓ [Â; θ]
dθρ2σ2

)

= W ?
Â+θ

(
θρ1σ1θρ2σ2

d2Γ [Â; θ]
dθρ1σ1dθρ2σ2

)

=
(
W ?

Â+θ
(θρ1σ1)θρ2σ2 + θρ1σ1W ?

Â+θ
(θρ2σ2)

)

× d2Γ [Â; θ]
dθρ1σ1dθρ2σ2

+ θρ1σ1θρ2σ2W ?
Â+θ

(
d2Γ [Â; θ]

dθρ1σ1dθρ2σ2

)

= θρ1σ1θρ2σ2

(
∂W ?

θ (θ
ρσ)

∂θρ1σ1

d2Γ [Â; θ]
dθρσdθρ2σ2

+
∂W ?

θ (θ
ρσ)

∂θρ2σ2

d2Γ [Â; θ]
dθρ1σ1dθρσ

+W ?
Â+θ

(
d2Γ [Â; θ]

dθρ1σ1dθρ2σ2

))
,

using the linearity of W ?
θ (θ

ρσ) in θ. We can now omit the
leading factors of θ from T ?

2 in (67) and (70), generalize it
to any order n and put θ = 0:(

dn(W ?
Â+θ

Γ [Â, θ])

dθρ1σ1 . . .dθρnσn

)
θ=0

=
n∑

i=1

∂W ?
θ (θ

ρσ)
∂θρiσi

×
(

dnΓ [Â; θ]
dθρ1σ1 . . .dθρi−1σi−1dθρσdθρi+1σi+1 . . .dθρnσn

)
θ=0

+W ?
A

(
dnΓ [Â; θ]

dθρ1σ1 . . .dθρnσn

)
θ=0

. (70)

Note that from W ?
Â+θ

at θ = 0 there survives only the
commutative conformal transformation W ?

A defined in
(14)–(16). Inserted into (66) we get the final result

N∑
n=0

1
n!
θρ1σ1 · · · θρnσn

(
dn(W ?

Â+θ
Γ [Â, θ])

dθρ1σ1 . . .dθρnσn

)
θ=0

= WA+θ

(
N∑

n=0

1
n!
θρ1σ1

· · · θρnσn

(
dnΓ [Â, θ]

dθρ1σ1 . . .dθρnσn

)
θ=0

)
. (71)

This result can be formulated as the following theorem:
Acting with the non-commutative conformal transforma-
tions (translation, rotation, dilatation) on action function-
als Γ [Â, θ] and applying the Seiberg–Witten map is iden-
tical to the action of the commutative translation, rotation
and dilatation operations, respectively, on Γ [Â[A, θ], θ].

The result means that with the non-commutative con-
formal symmetries there are – after a Seiberg–Witten map

– no further symmetries associated than the standard
commutative conformal symmetries. Thus, the non-
commutative conformal symmetries do not give any hints
for the renormalization of non-commutative Yang–Mills
theories.

6 Quantization

Passing from a classical action with gauge symmetry to
quantum field theory one must introduce gauge-fixing
terms to the action in order to define the propagator.
Here we repeat this construction for the non-commutative
Yang–Mills theory.

The NCYM theory is enlarged by the fields ĉ, ˆ̄c, B̂
which transform according to the following representation
of (10):

WT
Â+ĉ+ˆ̄c+B̂+θ;τ =WT

Â+θ;τ

+
∫

d4xtr
(
∂τ ĉ

δ

δĉ
+ ∂τ ˆ̄c

δ

δˆ̄c
+ ∂τ B̂

δ

δB̂

)
, (72)

WR
Â+ĉ+ˆ̄c+B̂+θ;αβ

=WR
Â+θ;αβ

+
∫

d4xtr
((

1
2
{xα, ∂β ĉ}	 − 1

2
{xβ , ∂αĉ}	

)
δ

δĉ

+
(
1
2
{xα, ∂β ˆ̄c}	 − 1

2
{xβ , ∂αˆ̄c}	

)
δ

δˆ̄c

+
(
1
2
{xα, ∂βB̂}	 − 1

2
{xβ , ∂αB̂}	

)
δ

δB̂

)
, (73)

WD
Â+ĉ+ˆ̄c+B̂+θ

=WD
Â+θ

+
∫

d4xtr
(
1
2
{xδ, ∂δ ĉ}	

δ

δĉ

+
(
1
2
{xδ, ∂δ ˆ̄c}	 + 2ˆ̄c

)
δ

δˆ̄c

+
(
1
2
{xδ, ∂δB̂}	 + 2B

)
δ

δB̂

)
. (74)

The non-commutative BRST transformations are given by

ŝÂµ = D̂µĉ, ŝĉ = −iĉ � ĉ, ŝˆ̄c = B̂, ŝB̂ = 0. (75)

It is then not difficult to verify that the standard gauge-
fixing action

Σ̂gf =
∫

d4xtr
(
ŝ
[
ˆ̄c �
(
∂µÂµ +

α

2
B̂
)])

(76)

is conformally invariant:

WT
Â+ĉ+ˆ̄c+B̂+θ;τ Σ̂gf = 0,

WR
Â+ĉ+ˆ̄c+B̂+θ;αβ

Σ̂gf = 0,

WD
Â+ĉ+ˆ̄c+B̂+θ

Σ̂gf = 0. (77)

Loop calculations based on Σ̂+Σ̂gf in (31) and (76) suffer
from infrared divergences [3].
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To circumvent the IR-problem one can however use the
θ-expansion of the NCYM action leading to a gauge field
theory on commutative space-time coupled to an external
field θ. This action is quantized according to the analogous
formulae as above, omitting everywhere the hat symboliz-
ing non-commutative objects and replacing the �-product
by the ordinary product. This approach was used in [10]
to compute the one-loop photon self-energy in θ-expanded
Maxwell theory and in [5] to show renormalizability of the
photon self-energy to all orders in � and θ.

7 Summary and outlook

We have established rigid conformal transformations (23)–
(25) for the non-commutative Yang–Mills field Â. Our re-
sults related to these transformations can be summarized
as follows.

The (classical) non-commutative Yang–Mills action
(31) is invariant under the Lie algebra L of gauge trans-
formations WG

Â;λ̂
and the sum W ?

Â
+ W ?

θ of conformal

transformations of Â and θ. The commutation relations
[W ?

Â
+W ?

θ ,W
G
Â;λ̂

] = WG
Â;λ̂′ in L suggest a covariant split-

ting W ?
Â
+W ?

θ = W̃ ?
Â
+ W̃ ?

θ . The relation [W̃ ?
Â
,WG

Â;λ̂
] =

WG
Â;λ̂′′ is trivially solved by a covariance ansatz. Then, the

covariant complement W̃ ?
θ is simply obtained from invari-

ance of the NCYM action under W̃ ?
Â
+W̃ ?

θ -transformation.
The solution for W̃ ?

θ is given by the Seiberg–Witten dif-
ferential equation (59). What we have thus achieved is
a more transparent – and less restrictive – derivation of
the Seiberg–Witten differential equation which does not
require the usual ansatz of gauge equivalence.

The covariant splitting of the combined conformal
transformations was motivated by the observation that
the breaking of particle Lorentz transformations should
be gauge invariant, an observable.

Interpreting the Seiberg–Witten differential equation
as an evolution equation we can express the non-commuta-
tive Yang–Mills field Â in terms of its initial value A. The
resulting θ-expansion of the NCYM action is due to the
covariance [W̃ ?

θ ,W
G
Â;λ̂

] = WG
Â;λ̂′′′ invariant under commu-

tative gauge transformations. Moreover, non-commutative

conformal transformations reduce after θ-expansion to
commutative conformal transformations. In this way we
associate to the NCYM theory a gauge theory YMθ on
commutative space-time for a commutative gauge field A
coupled to a translation-invariant external field θ. Both
gauge theories can be quantized by adding appropriate
gauge-fixing terms and yield the two quantum field the-
ories q-NCYM and q-YMθ, respectively. It is unclear in
which sense these two quantum field theories are equiv-
alent. At least on a perturbative level the quantum field
theories q-NCYM and q-YMθ are completely different.

Loop calculations [3] and power-counting analysis [4]
for q-NCYM reveal a new type of infrared singularities
which so far could not be treated. Loop calculations [10]
for q-YMθ are free of infrared problems but lead appar-
ently to an enormous amount of ultraviolet singularities.
This is not necessarily a problem. For instance, all UV-
singularities in the photon self-energy are field redefini-
tions [5] which are possible in presence of a field θµν of
negative power-counting dimension. For higher N -point
Green’s functions the situation becomes more and more
involved and a renormalization seems to be impossible
without a symmetry for the θ-expanded NCYM action.
We had hoped in the beginning of the work on this pa-
per that this symmetry searched for could be the Seiberg–
Witten expansion of the non-commutative conformal sym-
metries. As we have seen in Sect. 5.5 this is not the case
and the complete renormalization of NCYM theory re-
mains an open problem.

We have proved that the non-commutative gauge field
is an irreducible representation of the undeformed con-
formal Lie algebra. The non-commutative spin-1/2 repre-
sentations for fermions have been worked out in [16]. This
shows that classical concepts of particles and fields extend
without modification to a non-commutative space-time.
We believe this makes life in a non-commutative world
more comfortable.

Of course much work remains to be done. First we have
considered a very special non-commutative geometry of a
constant θµν . This assumption should finally be relaxed;
at least the treatment of those non-constant θµν which
are Poisson bivectors as in [18] seems to be possible. The
influence of the modified concept of locality on causality
and unitarity of the S-matrix must be studied. Previous
results [19,20] with different consequences according to
whether the electrical components of θµν are zero must
be invariantly formulated in terms of the signs of the two
invariants θµνθµν and εµνρσθ

µνθρσ. Eventually the renor-
malization puzzle for non-commutative Yang–Mills theory
ought to be solved.
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Appendix

A Covariant Â-rotation of the NCYM action

Let us give here the calculations leading to the result (56).
The first input is the Â-variation of the NCYM action (31)

δΣ̂

δÂµ(x)
=

1
g2 (D̂κF̂

κµ)(x). (A.1)

Inserted into (52), for Ω̂ρσµ = 0, we obtain

W̃R
Â;αβ

Σ̂ =
1
2g2

∫
d4xtr

((
X̂α � F̂βµ (A.2)

+ F̂βµ � X̂α − X̂β � F̂αµ − F̂αµ � X̂β

)
� D̂κF̂

κµ

)

=
1
2g2

∫
d4xtr

(
X̂α �

(
D̂κ{F̂βµ, F̂

κµ}	

− {D̂κ(F̂βµ), F̂κµ}	

)

− X̂β � (D̂κ{F̂αµ, F̂
κµ}	 − {D̂κ(F̂αµ), F̂κµ}	)

)
.

Now we use the Bianchi identity D̂αF̂βγ+D̂βF̂γα+D̂γF̂αβ

= 0 and the antisymmetry in κ, µ to rewrite

D̂κ(F̂βµ) � F̂κµ =
1
2
D̂β(F̂κµ) � F̂κµ, (A.3)

and similarly for the other terms in (A.2). We then obtain

W̃R
Â;αβ

Σ̂ =
1
g2

∫
d4xtr

(
X̂α � D̂κ

(
1
2
{F̂βµ, F̂

κµ}	

− 1
8
δκ
β{F̂µν , F̂

µν}	

)

− X̂β � D̂κ

(
1
2
{F̂αµ, F̂

κµ}	− 1
8
δκ
α{F̂µν , F̂

µν}	

))

=
1
g2

∫
d4xtr

(
D̂κ(X̂α � T̂

κ
β − X̂β � T̂

κ
α )

− D̂κ(X̂α) � T̂κ
β + D̂κ(X̂β) � T̂κ

α

)
, (A.4)

where we have used (58) and the derivation property of
D̂κ. Note that the total derivative

∫
d4xtr(D̂κĴ

κ
αβ) in (A.4)

vanishes. The result (56) follows now from

D̂κX̂α = gακ + θ ν
α F̂κν , (A.5)

which is easily derived from the formulae in Sect. 2, and
the symmetry T̂αβ = T̂βα.

B Derivation of the Seiberg–Witten
differential equation

We first compute the explicit θ-dependence of the �-
product according to the last term in (27),

WR
θ;αβΣ̂ = − 1

g2

∫
d4xtr

(
θαρ∂

ρÂσ �

{
1
2
∂βÂν , F̂

ν
σ

}
	

− θβρ∂
ρÂσ �

{
1
2
∂αÂν , F̂

ν
σ

}
	

)
. (B.1)

Then, (48) and (A.1) yield

W̃R
θ;αβΣ̂ = rhs(B.1)

+
1
g2

∫
d4xtr

(
(δρ

αθ
σ

β − δρ
βθ

σ
α + δσ

αθ
ρ
β − δσ

βθ
ρ
α)

× dÂµ

dθρσ
� D̂κF̂

κµ

)

= rhs(B.1)

+
2
g2

∫
d4xtr

(
θ σ

α D̂κ

(
dÂµ

dθβσ

)
� F̂κµ

− θ σ
β D̂κ

(
dÂµ

dθασ

)
� F̂κµ

)
, (B.2)

where rhs(B.1) stands for the right hand side of (B.1).
Inserting (56), (B.1) and (B.2) into the first condition (54)
and splitting the result into the independent parts with
coefficients θαρ/g

2 and θβρ/g
2 we find for the first one

0 =
∫

d4xtr

(
F̂ ρσ � T̂βσ − 1

2
∂ρÂσ � {∂βÂν , F̂

ν
σ }	

+ 2gρσD̂κ

(
dÂµ

dθβσ

)
� F̂κµ

)

=
∫

d4xtr

(
− 1

2
∂ρÂσ � {D̂νÂβ , F̂

ν
σ }	

− 1
8
∂ρÂβ � {F̂µν , F̂

µν}	 − 1
2
D̂σÂρ � {F̂βν , F̂

ν
σ }	

+
1
8
D̂βÂ

ρ � {F̂µν , F̂
µν}	 + 2gρσD̂κ

(
dÂµ

dθβσ

)
� F̂κµ

)

=
∫
d4xtr

(
gρσ

(
− 1

2
{∂σÂµ, D̂νÂβ}	− 1

2
{D̂µÂσ, F̂βν}	

− 1
8
{F̂σβ , F̂µν}	 + 2D̂µ

(
dÂν

dθβσ

))
� F̂µν

)

=
∫

d4xtr
(
gρσ

(
1
4
{D̂µÂβ , ∂σÂν + F̂σν}	

− 1
4
{D̂µÂσ, ∂βÂν + F̂βν}	

− 1
8
{F̂σβ , F̂µν}	 + 2D̂µ

(
dÂν

dθβσ

))
� F̂µν

)
, (B.3)
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where we have used several times cyclicity of the trace,
the identity F̂βν = ∂βÂν − D̂νÂβ and the antisymmetry
of F̂µν . Now we consider∫

d4xtr({Âβ , D̂µ(∂σÂν + F̂σν)}	 � F̂
µν)

=
∫

d4xtr({Âβ , D̂µD̂νÂσ + 2D̂µF̂σν}	 � F̂
µν)

=
∫

d4xtr
({

Âβ ,− i
2
[F̂µν , Âσ]	 + D̂σF̂µν

}
	

� F̂µν

)

=
∫

d4xtr
(
i
4
[Âβ , Âσ]	 � {F̂µν , F̂

µν}	

− 1
2
D̂σÂβ � {F̂µν , F̂

µν}	

)
, (B.4)

where we have used the Bianchi identity and integrated
by parts. Antisymmetrizing in β, σ we obtain∫

d4xtr({Âβ , D̂µ(∂σÂν + F̂σν)}	 � F̂
µν

−{Âσ, D̂µ(∂βÂν + F̂βν)}	 � F̂
µν)

=
∫

d4xtr
(

−1
2
{F̂σβ , F̂µν}	 � F̂

µν

)
. (B.5)

Combining (B.3) and (B.5) we arrive at

0 =
∫

d4xtr
(
D̂µ

(
1
4
{Âβ , ∂σÂν + F̂σν}	

− 1
4
{Âσ, ∂βÂν + F̂βν}	 + 2

dÂν

dθβσ

)
� F̂µν

)
, (B.6)

which leads after reinsertion of Ω̂ρσµ to the Seiberg–
Witten differential equation (59).

C The commutator between rotation
and total θ-variation

We will prove here (68) in the case of rotation. As usual
it is sufficient to evaluate the commutator on Âµ and on
θµν . The last one is zero because rotation and dilatation
of θ commute; see (10). In fact the commutator will vanish
for a very general class of differential equations. Let

θρσ dÂµ

dθρσ
= θρσΦρσµ, (C.1)

where Φρσµ is a polynomial in5 Â and θ with power-
counting dimension 3. We assume that Φρσµ transforms
as a tensor under rotation

WR
Â+θ;αβ

Φρσµ =
1
2
{xα, ∂βΦρσµ}	 − 1

2
{xβ , ∂αΦρσµ}	

5 Φ may also depend on the coordinates. In this case however,
(C.2) should also involve rotation of the coordinates

+gραΦβσµ − gρβΦασµ + gσαΦρβµ − gσβΦραµ

+gµαΦρσβ − gµβΦρσα. (C.2)

We find[
WR

Â+θ;αβ
, θρσ d

dθρσ

]
Âµ =WR

Â+θ;αβ
(θρσΦρσµ)

−θρσ d
dθρσ

(
1
2
{xα, ∂βÂµ}	

−1
2
{xβ , ∂αÂµ}	 + gαµÂβ − gβµÂα

)
= θ ρ

α (Φρβµ − Φβρµ)− θ ρ
β (Φραµ − Φαρµ)

+θρσ

(
1
2
{xα, ∂βΦρσµ}	 − 1

2
{xβ , ∂αΦρσµ}	

+gραΦβσµ − gρβΦασµ

+gσαΦρβµ − gσβΦραµ + gµαΦρσβ − gµβΦρσα

)

−θρσ

(
1
2
{xα, ∂βΦρσµ}	 − 1

2
{xβ , ∂αΦρσµ}	

+gαµΦρσβ − gβµΦρσα

)

= 0. (C.3)

Now, one checks that dÂµ/dθρσ from (59) fulfills (C.2),
whereby we have proven (68) for rotation. The proof of
(68) in the case of dilatation is performed in a similar
manner. The translational proof is immediate.

We stress, however, that (68) by no means singles out
the Seiberg–Witten differential equation.
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